Triterpenoids from the Leaves of Ilex hainanensis

by Si-Xiang Zhou^a)^b), Jun-Shan Yang^{*a}), Fu-Cheng Liu^a), and Peng-Fei Tu^{*b})

 ^a) Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, 151 Malianwa North Road, Haidian District, Beijing 100094, P. R. China (phone: +86-10-62899707; fax: +86-10-62898425; e-mail: junshanyang@hotmail.com)
^b) School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100083, P. R. China (phone/fax: +86-10-82802750; e-mail: pengfeitu@bjmu.edu.cn)

Phytochemical investigation on the leaves of *Ilex hainanensis* MERR. led to the isolation of four new ursane- and oleanane-based triterpenoids, ilexhainanins A-D (1-4), as well as two known compounds, $2\alpha_3\beta_3$,19 α -trihydroxyus-12-ene-23,28-dioic acid and $2\alpha_3\beta_3$,19 α -trihydroxyolean-12-ene-23,28-dioic acid. Their structures were elucidated on the basis of chemical and spectroscopic evidence, and by comparison with literature data.

Introduction. – *Ilex hainanensis* MERR. (Aquifoliaceae) is distributed mainly in the southern region of the People's Republic of China. The leaves of this plant is a traditional tea product, known as '*shan-lv-cha*'. It is also used in traditional Chinese medicine (TCM) as a diuretic, antihypertensive, antilipemic, and anti-inflammatory agent. There are numerous clinical research reports on the use of '*shan-lv-cha*' for treatment of hypertension [1]. However, only a few phytochemical investigations have been performed, and as few as five compounds have been isolated from *I. hainanensis* [2][3]. Therefore, a more systematic chemical investigation was carried out.

Herein, we report four new triterpenoids, ilexhainanins A–D (1–4), from the leaves of *I. hainanensis*. They were isolated together with the two known constituents $2\alpha,3\beta,19\alpha$ -trihydroxyurs-12-ene-23,28-dioic acid [4] and $2\alpha,3\beta,19\alpha$ -trihydroxyolean-12-ene-23,28-dioic acid [5].

© 2007 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – Compound **1** was obtained as an optically active powder $([\alpha]_D^{26} = +42.3 \ (c=1.3, \text{MeOH}))$. It gave rise to a positive *Liebermann–Burchard* coloration test, indicating a triterpenoid structure. The molecular formula $C_{30}H_{46}O_6$ was deduced by negative-ion HR-ESI-MS $(m/z \ 501.3217 \ ([M-H]^-))$, in accord with eight degrees of unsaturation. The IR spectrum of **1** showed characteristic bands for OH (3401) and C=O (1692 cm⁻¹) groups. The ¹H- and ¹³C-NMR data of **1** (*Table 1*) indicated a pentacyclic triterpenoid, assignments being confirmed with the help of 2D-NMR (HMBC, HSQC, NOESY) experiments.

The ¹H-NMR spectrum of **1** (*Table 1*) revealed the presence of four Me groups at δ (H) 1.08 (2s), 1.25 (s), and 1.70 (s), a Me *doublet* at δ (H) 1.15 (J = 6.5 Hz), one olefinic signal at δ (H) 5.52 (br. s, H–C(12)), and a characteristic signal for H–C(18) at δ (H) 2.73 (d, J = 12 Hz). The ¹³C-NMR spectrum indicated a C=C bond (δ (C) 125.8, 139.1), two COOH groups (δ (C) 180.9, 179.9), and two oxygenated C-atoms (δ (C) 78.2 (OCH), 65.1 (OCH₂)). The above data pointed to a triterpenoid with an urs-12-ene skeleton.

A typical signal of an axial H–C(3) atom at δ (H) 3.34 (dd, J=12.0, 4.0 Hz) was observed, indicating a β -equatorial orientation of the 3-OH group in **1** [6]. In the HMBC spectrum (*Fig. 1,a*), correlation peaks were observed from δ (H) 3.34 (H–C(3)) to δ (C) 180.9 (COOH) and 24.7 (Me), and from δ (H) 1.70 (Me) to δ (C) 180.9, 78.2 (C(3)), and 49.2 (C(4)), which indicated that a COOH and a Me group were both attached to C(4), the Me(23) group being in α -equatorial position, on the basis of its ¹³C-NMR chemical shift (*Table 1*) [7]. The HMBC correlation between δ (H) 2.73 (H–C(18)) and δ (C) 179.9 indicated that the second COOH group (C(28)) was linked at C(17). The second OH group was placed at C(30), on the basis of NMR resonances at δ (H) 3.91, 3.97 (2*dd*, J=5.5, 2.5 Hz each) in combination with HMBC analysis (*Fig. 1,a*).

Fig. 1. Key HMBC correlations of a) 1 and b) 2

The relative configuration of **1** was confirmed by a NOESY experiment. The 3β -OH, 4α -Me, and 4β -COOH groups were in accord with the following NOESY correlations: H–C(3)/H–C(5) [δ (H) 1.03–1.07 (m)], H–C(3)/Me(23) (δ (H) 1.70 (s, 3 H)), and Me(23)/H–C(5). The correlations between H–C(18) and Me(29) (δ (H) 1.15 (d, J=6.5 Hz)), and between H–C(18) and H–C(20) (δ (H) 1.26–1.30 (m)) indicated an α -configured CH₂OH group at C(20). From the above evidence, the structure of com-

Position	1		2	
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$
1	39.7	1.02 - 1.06 (m)	39.6	1.04 - 1.10 (m)
		1.64 - 1.70 (m)		1.58 - 1.62 (m)
2	29.5	1.24 - 1.26(m)	29.5	1.26 - 1.30 (m)
		1.30 - 1.32(m)		
3	78.2	3.34 (dd, J = 14.0, 4.0)	78.2	3.34 (dd, J = 14.0, 4.0)
4	49.2		49.2	
5	56.8	1.03 - 1.07 (m)	56.8	1.06 - 1.10 (m)
6	20.7	2.02 - 2.08(m)	20.8	2.02 - 2.08 (m)
		2.10-2.16(m)		2.10-2.16(m)
7	33.9	1.40 - 1.46 (m)	33.5	1.46 - 1.56(m)
		1.48 - 1.56(m)		
8	39.8		39.5	
9	47.3	1.60 - 1.64 (m)	47.4	1.60 - 1.64 (m)
10	37.8		37.8	
11	23.8	1.92 - 2.00 (m)	24.0	1.94 - 2.02 (m)
12	125.8	5.52 (br. s)	122.6	5.59 (br. s)
13	139.1		144.8	
14	42.6		42.2	
15	29.0	1.88 - 1.96 (m)	28.3	1.08 - 1.12 (m)
		2.38 - 2.44(m)		2.10-2.16(m)
16	25.0	1.98-2.04(m)	23.8	1.90 - 1.94(m)
		2.20-2.26(m)		2.12 - 2.16(m)
17	48.3		47.2	
18	53.6	2.73 (d, J = 12.0)	41.5	3.41 (dd, J = 14.0, 4.0)
19	33.9	1.98–2.06 (<i>m</i>)	41.2	1.46 - 1.50 (m)
				2.06 - 2.10 (m)
20	47.4	1.26 - 1.30 (m)	36.6	
21	25.7	1.56 - 1.62 (m)	29.0	1.35 - 1.39(m)
		1.94 - 1.98 (m)		1.76 - 1.80 (m)
22	37.4	1.98 - 2.04(m)	32.6	1.86 - 1.90 (m)
		2.08 - 2.10 (m)		2.10-2.14(m)
23	24.7	1.70 (s)	24.7	1.69 (s)
24	180.9		180.9	
25	14.0	1.08(s)	13.8	1.06(s)
26	17.4	1.08 (s)	17.3	1.08(s)
27	23.8	1.25(s)	26.0	1.29 (s)
28	179.9		180.2	
29	17.2	1.15 (d, J = 6.5)	73.8	3.60(s)
30	65.1	3.91 (dd, J = 5.5, 2.5)	19.8	1.20(s)
		3.97 (dd, J = 5.5, 2.5)		

Table 1. ¹H- and ¹³C-NMR Data of **1** and **2**. At 500 (¹H) and 125 MHz (¹³C), in C₅D₅N; δ in ppm, J in Hz.

pound **1** was unequivocally established as (3β) -3,30-dihydroxyurs-12-ene-24,28-dioic acid, and named *ilexhainanin A*.

Compound **2**, isolated as a colorless, amorphous powder, gave a positive *Lieber-mann–Burchard* coloration test. Its molecular formula was $C_{30}H_{46}O_6$ according to HR-ESI-MS (m/z 501.3218 ($[M-H]^-$)), corresponding to eight degrees of unsatura-

tion. The compound was optically active, with $[\alpha]_D^{26} = +53.5$ (c=2.3, MeOH). The IR spectrum revealed the presence of OH (3430) and C=O (1692 cm⁻¹) groups. The ¹H-NMR spectrum of **2** showed signals of five Me *singlets* at δ (H) 1.06, 1.08, 1.20, 1.29, 1.69, one olefinic H-atom at δ (H) 5.59 (br. *s*), and a characteristic signal for H–C(18) at δ (H) 3.41 (*dd*, J=14.0, 4.0 Hz). The ¹³C-NMR spectrum indicated one C=C bond (δ (C) 122.6, 144.8), two COOH functions (δ (C) 180.2, 180.9), and two oxygenated C-atoms (δ (C) 73.8 (HOCH₂), 78.2 (OCH)). The above evidence suggested that compound **2** was a triterpenoid with an olean-12-ene C skeleton, and an isomer of compound **1**.

Careful comparison of the ¹³C-NMR spectroscopic data of **2** with those of **1** showed that the signals for C(1) to C(11) and C(23) to C(26) were basically identical in both compounds, which indicated identical rings *A*, *B*, and *C*. To confirm the substitution pattern of **2** in ring *E*, the known triterpenoid (3 β)-3,29-dihydroxyolean-12-ene-23,28-dioic acid [8] was used as a reference compound. The signals of C(12) to C(22) and of C(27) to C(30) of **2** matched well with those of the known triterpenoid, which suggested that their *C*-, *D*-, and *E*-rings were similar. The NMR data assignments were further corroborated by HSQC and HMBC correlations (*Fig. 1,b*). Thus, based on the above evidence, the structure of compound **2** was elucidated as (3 β)-3,29-dihydroxyolean-12-ene-24,28-dioic acid, and named *ilexhainanin B*.

Compound **3**, isolated as an amorphous powder and showing a positive *Liebermann–Burchard* test, was found to have the molecular formula $C_{30}H_{46}O_7$ by HR-ESI-MS (m/z 517.3168 ($[M-H]^-$), indicating eight degrees of unsaturation. It was optically active, with $[a]_D^{26} = +28.8 \ (c=0.9, \text{ MeOH})$. The IR spectrum indicated the presence of OH (3427) and C=O (1690 cm⁻¹) groups. These data, together with a comparison of the ¹H- and ¹³C-NMR data of **3** (*Table 2*) with those of **1**, indicated that **3** was a triterpenoid with an urs-12-ene C skeleton.

The ¹³C-NMR spectrum of **3** indicated two COOH groups (δ (C) 179.2, 180.6), three oxygenated C-atoms (δ (C) 64.4 (HOCH₂), 73.2 (OCH), and 72.6 (C₀)). Oxygenation at C(19) was inferred from the low-field-shifted signal at δ (C) 72.6 (C(19)) showing longrange HMBC correlations with H–C(18) (δ (H) 3.03 (br. s)), Me(29) (δ (H) 1.43 (s)), and Me(30) (δ (H) 1.10 (d, J = 6.5 Hz)). The second OH group was considered to be at C(3). Its β -configuration was derived from the coupling pattern of axial H–C(3) $(\delta(H) 4.21 (dd, J=13.0, 4.0 Hz))$. Careful comparison of the ¹H- and ¹³C-NMR data of **3** with those of ilexagenin A (= 3β ,19 α -dihydroxyurs-12-ene-24,28-dioic-acid) [9] exhibited differences only in ring A. Thus, the signal for Me(23), which was observed at $\delta(H)$ 1.70 and $\delta(C)$ 24.7 in ilexagenin A, was not present in **3**; instead, the signals of a CH₂OH group were detected in **3** (δ (H) 4.39, 4.73 (*AB*-type q, J=10.5 Hz); δ (C) 64.4). Both a COOH and a CH₂OH group were attached to C(4), as confirmed by the key HMBC correlations (Fig. 2,a) from $\delta(H)$ 4.21 (H–C(3)) to $\delta(C)$ 179.2 (COOH) and δ (C) 64.4 (CH₂OH), and from δ (H) 4.39, 4.73 (CH₂(23)) to δ (C) 179.2 $(C(24)), \delta(C)$ 55.1 $(C(4)), \text{ and } \delta(C)$ 73.2 (C(3)). The HMBC correlations between δ (H) 3.03 (H–C(18)) and δ (C) 180.6 confirmed that the second COOH group was linked at C(17).

The relative configuration of **3** was deduced by a NOESY experiment. The 3β -OH, 4β -COOH, and 4α -CH₂OH groups were in accord with the following NOESY correlations: H–C(3)/H–C(5) and H–C(3)/CH₂(23). Further, H–C(18) correlated with

Position	3		4	
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$
1	39.6	1.08–1.16 (<i>m</i>)	39.3	1.08–1.16 (<i>m</i>)
		1.68 - 1.72 (m)		1.68 - 1.72(m)
2	29.3	1.20 - 1.30 (m)	29.2	1.10 - 1.20 (m)
3	73.2	4.21(dd, J = 13.0, 4.0)	73.0	4.21 (dd, J = 13.0, 4.0)
4	55.1		55.1	
5	49.3	1.82 - 1.86(m)	49.3	1.82 - 1.86 (m)
6	20.7	2.20-2.28(m)	20.7	2.16-2.24(m)
7	33.6	1.44 - 1.48 (m)	33.6	1.70 - 1.76(m)
		1.98-2.02(m)		2.12 - 2.16(m)
8	40.2		39.8	
9	47.3	1.90 - 1.94 (m)	47.9	1.86 - 1.90 (m)
10	37.6		37.8	
11	24.3	2.00-2.10(m)	24.3	2.00-2.10(m)
12	128.0	5.95 (br. s)	123.0	5.56 (br. s)
13	139.9		144.8	
14	42.3		42.2	
15	29.3	2.06-2.14(m)	29.1	2.06-2.14(m)
		2.26-2.32(m)		2.26 - 2.32(m)
16	26.4	1.98 - 2.06 (m)	27.0	2.00-2.10(m)
17	48.2		46.0	
18	54.6	3.03 (br. s)	44.8	3.60 (br. s)
19	72.6		81.0	3.60 (br. s)
20	42.3	1.46 - 1.50 (m)	35.5	
21	27.0	1.30-1.34(m)	28.4	2.06-2.12(m)
		1.40 - 1.44 (m)		2.76 - 2.80 (m)
22	38.4	1.98-2.06(m)	33.3	1.38 - 1.42 (m)
		2.08-2.16(m)		1.60 - 1.66 (m)
23	64.4	4.39, 4.73 (AB q, J = 10.5)	64.3	4.40, 4.74 (AB q, J = 10.5)
24	179.2		179.2	
25	14.3	1.20(s)	14.1	1.20 (s)
26	17.1	1.16(s)	17.3	1.16 (s)
27	24.5	1.68(s)	24.6	1.60 (s)
28	180.6		180.8	
29	26.9	1.43 (s)	28.8	1.18 (s)
30	16.7	1.10 (d, J = 6.5)	24.8	1.09 (s)

Table 2. ¹H- and ¹³C-NMR Data of **3** and **4**. At 500 (¹H) and 125 MHz (¹³C) in C_5D_5N ; δ in ppm, J in Hz.

Me(29) (δ (H) 1.43 (s)), which indicated an α -OH group at C(19). On the basis of the above evidence, the structure of compound **3** was, thus, determined as (3β ,19R)-3,19,23-trihydroxyurs-12-ene-24,28-dioic acid, and named *ilexhainanin C*.

Compound 4, obtained as an amorphous powder, also gave a positive *Liebermann–Burchard* test. The molecular formula of 4 was determined as $C_{30}H_{46}O_7$ by HR-ESI-MS (m/z 517.3169 ($[M-H]^-$)), suggesting eight degrees of unsaturation. The compound was optically active, with $[\alpha]_D^{26} = +36.6$ (c = 1.0, MeOH). The IR spectrum showed signals for OH (3428) and C=O (1690 cm⁻¹) groups. The above data, together with a detailed comparison of its ¹H- and ¹³C-NMR data (*Table 2*) with those of **2**, manifested

Fig. 2. Key HMBC correlations of a) 3 and b) 4

that **4** was an isomer of **3**. By comparing their ¹³C-NMR spectroscopic data, in combination with those of the known triterpenoid ilexolic acid B (=3 β ,19 α -dihydroxyolean-12-ene-23,28-dioic acid) [10], rings A-C of **4** were similar to those of **3**, and rings C-Eof **4** were similar to those of ilexolic acid B, respectively. NMR Assignments were confirmed with the help of HSQC and HMBC experiments (*Fig. 2, b*). Accordingly, the structure of **4** was unambiguously established as (3 β ,19 α)-3,19,23-trihydroxyolean-12ene-24,28-dioic acid, and named *ilexhainanin D*.

The two known compounds, 2α , 3β , 19α -trihydroxyurs-12-ene-23,28-dioic acid [4] and 2α , 3β , 19α -trihydroxyolean-12-ene-23,28-dioic acid [5], were identified by comparison of their spectroscopic data with those reported in the literature.

The authors thank the *National Science Foundation of China* for financial support (No. 30672608). This work was also supported by the program for Changjiang Scholar and Innovative Team in University (No. 985-2-063-112).

Experimental Part

General. Column chromatography (CC): silica gel H (200–300 mesh; Qingdao Marine Chemical Industry), Sephadex LH-20 gel (Pharmacia), ODS gel (25–40 µm; Merck), and D101 porous polymer resin (Tianjin Chemical Industry). Semi-prep. HPLC: ODS column (250×10 mm, 5 µm; Alltech), with ELSD detector (Alltech); flow rate, 2.5 ml/min. Optical rotations: Perkin-Elmer-243B digital polarimeter. NMR Spectra: Varian Inova-500 apparatus; at 500 (¹H) or 125 MHz (¹³C) in C₅D₅N at r.t.; δ in ppm rel. to Me₄Si, J in Hz. HR-ESI-MS (neg.): Bruker APEX-II FT-ICR-MS mass spectrometer; in m/z.

Plant Material. The leaves of *Ilex hainanensis* were purchased in Guangxi Province, South China, in March 2005, and identified by Prof. *P.-F. Tu.* A voucher specimen (SLC 200503) was deposited at the Herbarium of Peking University, Modern Research Center for Traditional Chinese Medicine.

Extraction and Isolation. The air-dried leaves (20 kg) of *I. hainanensis* were extracted with 70% aq. EtOH at 60° (3×). The combined extract was concentrated under vacuum, and the residue (1.7 kg) was suspended in H₂O, and extracted first with CHCl₃ and then with BuOH. The BuOH-soluble extract (300 g) was dissolved in H₂O, and the water-dissolved fraction (190 g) was subjected to CC (*D101* porous polymer resin; 1. H₂O, 2. 10, 30, 50, 70, and 95% aq. EtOH). The fraction eluted with 70% aq. EtOH (20 g) was subjected to CC (SiO₂; CHCl₃/MeOH/H₂O 20:1:0 \rightarrow 7:3:0.5) to afford 10 subfractions (*Fr. 1–10*). *Fr. 2* was purified by CC (1. *Sephadex LH-20*, MeOH; 2. *ODS*, 70% aq. MeOH) followed by semi-prep. HPLC (MeOH/H₂O 2:1) to furnish **1** (13 mg) and **2** (23 mg). *Fr. 5* was subjected to CC (1. *Sephadex LH-20*, MeOH) followed by semi-prep. HPLC (MeOH/H₂O 2:1)

to afford **3** (9 mg) and **4** (10 mg). Purification of *Fr. 8* by CC (ODS; 60% aq. MeOH) and then by semiprep. HPLC (MeCN/H₂O 35:65) afforded the two known compounds 2α , 3β , 19α -trihydroxyurs-12-ene-23,28-dioic acid (12 mg) [4] and 2α , 3β , 19α -trihydroxyolean-12-ene-23,28-dioic acid (13 mg) [5].

Ilexhainanin A (=(3 β)-3,30-*Dihydroxyurs*-12-ene-24,28-dioic Acid; **1**). Colorless, amorphous powder. [a]_D²⁶ = +42.3 (c=1.3, MeOH). IR (KBr): 3401, 1692. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS: 501.3217 ([M – H]⁻), C₃₀H₄₅O₆⁻; calc. 501.3216).

Ilexhainanin B (= ($\beta\beta$)-3,29-*Dihydroxyolean-12-ene-24,28-dioic Acid*; **2**). Colorless, amorphous powder. [a]_D²⁶ =+53.5 (c =2.3, MeOH). IR (KBr): 3430, 1692. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS: 501.3218 ([M – H]⁻), C₃₀H₄₅O₆⁻; calc. 501.3216).

Ilexhainanin C (=(3β,19R)-3,19,23-*Trihydroxyurs-12-ene-24*,28-*dioic Acid*; **3**). Colorless, amorphous powder. $[a]_D^{26}$ = +28.8 (*c* = 0.9, MeOH). IR (KBr): 3427, 1690. ¹H- and ¹³C-NMR: see *Table 2*. HR-ESI-MS: 517.3168 ([*M* – H]⁻) C₃₀H₄₅O₇⁻; calc. 517.3165).

Ilexhainanin D (=(3β ,19 α)-3,19,23-Trihydroxyolean-12-ene-24,28-dioic Acid; **4**). Colorless, amorphous powder. [a]₂₆⁵ = +36.6 (c = 1.0, MeOH). IR (KBr): 3428, 1690. ¹H- and ¹³C-NMR: see *Table* 2. HR-ESI-MS: 517.3169 ([M – H]⁻)), C₃₀H₄₅O₇⁻; calc. 517.3165).

REFERENCES

[1] Y. Chen, Z. Xie, J. Liu, H. Xin, J. Gungxi Tradit. Chin. Med. Univ. 2004, 7, 4.

[2] Z.-D. Ming, K.-H. Qin, Acta Pharm. Sin. 1984, 28, 2827.

[3] D.-X. Wen, X.-Z. Zheng, China J. Chin. Materia Med. 1999, 24, 223.

[4] F. Gao, F.-H. Chen, T. Tanaka, R. Kasai, T. Seto, O. Tanaka, Chem. Pharm. Bull. 1985, 33, 37.

[5] B.-G. Wang, Z.-J. Jia, *Phytochemistry* 1998, 49, 185.

[6] M.-A. Ouyang, C.-R. Yang, Z.-L. Chen, H.-Q. Wang, *Phytochemistry* 1996, 41, 871.

[7] S. B. Mahato, A. P. Kundu, *Phytochemistry* **1994**, *37*, 1517.

[8] M. Hani, A. Elgamal, H. S. M. Soliman, Magn. Reson. Chem. 1996, 34, 697.

[9] M. Nakatani, Y. Miyazaki, T. Iwashita, H. Naoki, T. Hase, *Phytochemistry* 1989, 28, 1479.

[10] K. Amimoto, K. Yoshikawa, S. Arihara, *Phytochemistry* **1993**, *33*, 1475.

Received September 27, 2006